
BicTCP Implemenation in Linux Kernels

Yee-Ting Li∗and Doug Leith†

Hamilton Institute, NUI Maynooth

15th February 2004

Abstract

This document describes a bug in BicTCP, which has been imple-
mented into the 2.6.6+ kernels.

1 Background

TCP is a protocol that regulates network congestion and best effort fair-
ness. Many attribute the success of the internet to the congestion avoid-
ance algorithms in the original TCP. However, TCP has performance de-
ficiencies [R03] and many New-TCP protocols have also been developed,
amongst which HSTCP, ScalableTCP, HTCP and FAST have been pro-
posed and discussed amongst the scientific network research communiti-
ties. Presently, only BicTCP [XHR] has been implemented into a standard
release of the Linux 2.6 kernels [Linux]1. In fact, the BicTCP algorithm
is actually switched on by default in 2.6.8 kernels and above [2.6.8].

Given that TCP plays such an important role in the current internet,
thorough analysis and testing of all New-TCP protocols should be con-
ducted and well understood as global widespread usage of such New-TCP
protocols may lead to undesirable effects on network fairness and stability.

We are currently in the process of developing generic tests along these
lines. As part of this work, we have identified an error in the implementa-
tion of BicTCP in the standard release of the Linux kernels. The objective
of this note is to describe this error and outline how it can be fixed.

2 BicTCP Implementation

BicTCP is based on the binary increase of the fundamental TCP variable
cwnd that controls the rate at which data is to sent into the network.

The BicTCP algorithm defines a threshold target value last max cwnd
for cwnd. This threshold is fundamental to the BicTCP algorithm as
BicTCP has differing data send rates depending on the relation between

∗Yee-Ting.Li@may.ie
†Doug.Leith@may.ie
1TCP Westwood and TCP Vega have also been implemented but are not considered here.

1

Figure 1: cwnd histories of BicTCP version 1.1 (blue) competing against Stan-
dard TCP (red). last max cwnd of BicTCP version 1.1 shown in purple with
100Mbit/sec common bottleneck and 162msec RTT experienced by both flows.
Bottleneck queuesize is 270 packets. Details of the experimental set-up is given
in Appendix A.

cwnd and last max cwnd; when cwnd is smaller than last max cwnd,
BicTCP regulates traffic into the network through an aggressive algo-
rithm until cwnd nears the target value at which point it steadies off its
sending rate [XHR]. Upon congestion, BicTCP backs off cwnd according
to cwnd← β × cwnd, where β is a constant parameter of the algorithm.

A cwnd history from a correct implementation of this algorithm is
shown in Figure 1. It is from the Linux 2.4.25 patch which is publicly
available from the authors of BicTCP [BicD]. This will been referred to
as BicTCP version 1.1 in this note. As described in [XHR], following
congestion the target value last max cwnd is set to halfway between the
cwnd just before congestion is detected and that after congestion. The
defaults for BicTCP version 1.1 define that the back-off factor β should
be 0.8. Therefore, the last max cwnd value after congestion should be
set to 0.9, i.e. (1− 1−0.8

2
).

In the various Linux implementations of BicTCP, this value is set
only in the function tcp recalc ssthresh which calculates appropriate TCP
parameters upon packet loss detection. In the BicTCP version 1.1, this is
implemented as;

if ((tp->snd_cwnd < tp->bictcp_last_max_cwnd) &&

(sysctl_bictcp_fast_convergence))

/* Wmax and fast convergence */

tp->bictcp_last_max_cwnd

= (tp->snd_cwnd

* (1024+sysctl_bictcp_1024times_beta))>>11;

where sysctl_bictcp_1024times_beta is set to 819 (representing 0.8
when bit shifted 10 times right). Therefore, the above code represents

2

the necessary calculation of last max cwnd = (1 − 1−0.8
2

) × cwnd of the
BicTCP proposal when β is 0.8.

3 Linux 2.6.6+ Kernel Implementation

The actual implementation of BicTCP in the standard release Linux 2.6
kernel is referred to here as the Linux 2.6.6+ implementation. This is also
applicable for all current Linux kernel versions including 2.6.6 and above2.

The Linux 2.6.6+ implementation of BicTCP appears to be based on
the INFOCOM paper [XHR]. Differences from the version implemented
in BicTCP version 1.1 include:

• The back-off factor β is 0.875 in Linux 2.6.6+ rather than 0.8 in
BicTCP version 1.1

• An early slow-start exit (ssthresh 100) is present in BicTCP version
1.1

• A ‘low utilisation detection mode’ based on a difference in ratio of
the measured minimum and maximum latencies experienced by the
TCP flow is present in BicTCP version 1.1 but is absent from Linux
2.6.6+

• Provision to account for delayed acking is present in the BicTCP
v1.1 release for Linux 2.4.25 but not in the Linux 2.6.6+ version.

The Linux 2.6.6+ implementations incorporates a reduction in the
number of sysctl’s through the introduction of a series of static #ifdef’s.
The corresponding define for the sysctl_bictcp_1024times_beta in the
Linux 2.6.6+ kernels is BICTCP_1_OVER_BETA which is set to 8 (correspond-
ing to a β of 0.875).

The kernel code (again in the function recalc recalc ssthresh) in the
Linux 2.6.6+ implementation is as follows:

if (sysctl_tcp_bic_fast_convergence &&

tp->snd_cwnd < tp->bictcp.last_max_cwnd)

tp->bictcp.last_max_cwnd

= (tp->snd_cwnd * (2*BICTCP_1_OVER_BETA-1))

/ (BICTCP_1_OVER_BETA/2);

This results in a last max cwnd value which is approximately 4 times
(15

4
) larger than the cwnd value at loss. The effects of this code can be

see in Figure 2. The large dips in the cwnd in Figure 2 (left) are due to
various issues in the Linux networking kernel as outlined in [DL04]. An
implementation of these various bug-fixes with BicTCP is shown in Fig-
ure 2 (right) which is zoomed to make the structure of the linear increase
more apparent.

2Analysis shows that the differences between the initial release of BicTCP on Linux 2.6.6
and that of newer kernels (up to 2.6.11-rc4) show no difference in the BicTCP code - the
exception being an implementation to ‘keep track of last time congestion was computed, and
recompute if cwnd changes or every 1/32 of a second’ [2.6.8]. These changes do not affect the
calculation of last max cwnd.

3

Figure 2: cwnd (blue) and last max cwnd (purple) histories of BicTCP Linux
2.6.6+ competing against Standard TCP (red) with 100Mbit/sec common bot-
tleneck and 162msec RTT experienced by both flows. Bottleneck queuesize is
270 packets. Plot on left is Linux 2.6.10 and the plot on the right is Linux 2.6.10
with [DL04] modifications.

The effect of setting last max cwnd to 15
4
× cwnd is that the TCP

connection will spend more time in BicTCP’s aggressive increase regime
where the cwnd is increased by 32 packets each round-trip time (as op-
posed to an increase of 1 packet each round-trip time in Standard TCP).

4 Linux Kernel Fix

As the value of last max cwnd specified in [XHR] is halfway between the
value of cwnd before and after congestion, the above bug can be easily
fixed the correction:

if (sysctl_tcp_bic_fast_convergence &&

tp->snd_cwnd < tp->bictcp.last_max_cwnd)

tp->bictcp.last_max_cwnd

= (tp->snd_cwnd * (2*BICTCP_1_OVER_BETA-1))

/ (BICTCP_1_OVER_BETA*2);

which will set the value of last max cwnd to 15
16
× cwnd = 0.9375 ×

cwnd which is the correct value for a the back-off factor of 1
8
. However,

this would not function correctly for values of BICTCP_1_OVER_BETA other
than 8, and therefore we recommend that it is modified to:

if (sysctl_tcp_bic_fast_convergence &&

tp->snd_cwnd < tp->bictcp.last_max_cwnd)

tp->bictcp.last_max_cwnd

= tp->snd_cwnd

- (tp->snd_cwnd / (BICTCP_1_OVER_BETA*2));

The impact of the above fix is shown in Figure 3. They clearly show the
appropriate settings of last max cwnd similar to the design of BicTCP
version 1.1. This patch is available at [Bic-Patch] and is compatible will
all versions of Linux 2.6.6 and above.

4

Figure 3: cwnd and last max cwnd (purple) histories of Linux 2.6.6+ BicTCP
with patch competing against Standard TCP (red). 100Mbit/sec common bot-
tleneck and 162msec RTT experienced by both flows. Bottleneck queuesize is
270 packets. Results shown for Linux 2.6.10 patched (left) and Linux 2.6.10
patched with [DL04] modifications (right).

Dummynet
Router

Standard TCP
receiver

Bic TCP
receiver

Standard TCP
sender

Bic TCP
sender

Figure 4: Experimental set-up of all tests. The BicTCP kernel is configured
with differing kernel versions as shown in Table 2.

A Experimental Setup

All tests performed in this paper were conducted through a dummynet
[R98] router connected via two gigE switches as shown in Figure 4. The
dummynet router was configured with 100Mbit/sec bottleneck and an
round trip latency of 162ms. The bottleneck queuesize was set to 20% of
the Bandwidth Delay Product (405,000 Bytes or 270 packets).

Two flows were injected into the testbed. The first is a standard TCP
(SACK) flow using a 2.6.6 kernel with [DL04] performance modifications.
The second flow was injected into the network 30 seconds after the initial
flow and was configured with various BicTCP kernel stacks as defined in
Table 2. All sending and receiving machines have identical hardware con-
figurations as shown in Table 1 and were connected to the GigE switches
at 1Gb/sec.

Traces of cwnd and last max cwnd were gathered through web100
[Web100] by overloading a GAUGE32 variable (in the above cases MinSsthresh).

5

Description
CPU Intel(R) Xeon(TM) CPU 2.80GHz
Memory 256Mbytes
Motherboard Dell PowerEdge 1600SC
Network Interface Card Intel Corp. 82540EM Gigabit Ethernet

Controller (rev 02)
NIC Driver Version Standard Linux distribution versions

with default configurations

Table 1: Experimental kernel versions used in experimental tests.

Name Kernel Version Web100 Version
[Web100]

BicTCP Version 1.1 [BicD] 2.4.25 2.3.5
BicTCP Linux 2.6.6+ [Linux] 2.6.10 2.5.2
BicTCP Linux Patched
[Bic-Patch]

2.6.10 2.5.2

Table 2: Experimental kernel versions used in experimental tests.

B Protocol Stacks

Tests were performed on the kernel stacks as shown in Table 2. Note that
the BicTCP differences between Linux 2.6 distributions are minimal and
do not affect the decrease parameter nor calculation of last max cwnd.

The Web100 implementations provide per flow TCP logging facilities
to allow debugging of TCP state variables.

References

[Linux] The Linux Kernel Archives. http://www.kernel.org/.

[2.6.8] Kernel.org - 2.6.8 Changelog,
http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-
2.6.8.

[XHR] L. Xu, K. Harfoush, and I. Rhee, Binary Increase Congestion
Control for Fast, Long Distance Networks. Infocomm 2004.

[Bic] I. Rhee, BIC TCP - Publications, http://www.csc.ncsu.edu/
faculty/rhee/export/bitcp/.

[BicD] I. Rhee, BIC TCP - Downloads, http://www.csc.ncsu.edu:8080/
faculty/rhee/export/bitcp/index files/Page546.htm

[DL04] D. J. Leith, Linux TCP Implementation Issues in High-Speed
Networks, http://www.hamilton.ie/net/LinuxHighSpeed.pdf.

[R03] S. Ravot, TCP transfers over high latencybandwidth networks &
Grid DT, Protocols For Long Distance Networks 2003.

6

[R98] L. Rizzo, Dummynet: A Simple Approach to the Evaluation
of Network Protocols, ACM Computer Communication Review,
vol. 27, no. 1, pp. 31-41, 1998.

[Web100] M. Mathis, J. Heffner, R. Reddy, R. Raghunarayan & J. Sape-
ria, Web100 Project, http://www.web100.org/.

[Bic-Patch] Y. Li, Linux 2.6.6+ BicTCP last max cwnd Patch,
http://www.hamilton.ie/net/.

7

